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1. Introduction 

The purpose of this project is to analyze the shear loading of a composite rectangular 
plate with a centrally located circular cutout in order to predict the buckling load of the 
plate. The first step in this analysis is to calculate the in-plane stress distribution of the 
plate prior to buckling. This problem can be solved using finite element methods, but a 
quicker and more cost efficient method is desired. The method chosen to determine the 
pre-buckling stresses is that of boundary collocation using complex variables. The real 
valued force functions are written in terms of two complex valued functions, each of which 
is a function of a different complex variable. The solution of the generalized biharmonic 
function is a superposition of functions of these two complex variables. 

For this analysis, the force functions are represented with Laurent series. The constants 
in these series are found using boundary collocation. Two force equations for complex 
variables are satisfied over the plate boundaries to obtain these constants. The stresses in 
the plate are then known for any particular locations on the plate given the applied shear on 
the edges of the plate. 



2. Analvsis 

For a two dimensional stress analysis, the equilibrium equations are: 

a o x x  a2xy 

ax ay - +- = O  

soy, azxy 
ay ax 
- + - = O  

The solutions for the stresses in terms of a function F are: 

a2F oyy = - a2F 
2 %= axay a Y 2  ax 

-- a2F ox, = - 

Writing the generalized biharmonic equation in terms of the stress function F gives: 

Defining: 

where )lk are the roots of the characteristic equation: 

k1,2 

The generalized biharmonic equation can be represented as: 

F = O  a a a a  
aZl azz aZl a% ---- 

the solution for F being: 



Substituting F back into the stress equations and letting &(Zk) =J@l&zk gives: 

a2F , , 

ax2 oy = - = 2*Re (Q1 + 0,) 

= -2*Re (pl@i + p2@i) a2F 7,. = - axay 
Two force equation can be written using the function k: 

where the upper sign applies to external contours, the lower sign applies to internal 
contours, and s is the arclength of a segment on the boundary originating at c 0 and ending 
at f. Xn and Yn are the forces applied to the boundary in the x and y directions 
respectively. For this analysis, the force function $k will be represented by a Laurent 
series of 2*N terns written as follows: 

where A h  is a complex number, c h  + i dh .  

Substituting the series representation for ilTk into the force equation and evaluation from i to 
i-1 gives: 

(1 1&12) 



Multiplying out the left hand side of equation ( 11 ) and finding the real part of the 
expressing gives: 

N 

Similarly for equation ( 12 ): 

-1 N 

(15) -N 1 

The tern k is determined by mapping zk in such a manner as to improve the conditioning 
of the system of equations generated by this method. For this analysis, the cutout will be 
mapped onto a unit circle using the mapping function: 

where a and b are the semi-major and semi-minor axes of an ellipse. 

Solving the force boundary conditions around the internal and external boundaries of the 
plate results in a system of equations which can be arranged in matrix form as follows: 

where the Ak are the unknown constants, % are the coefficients of the constants over 
each segment, and Fn are the resultant forces applied over the segment. To improve the 
solution of this system of equations, a least squares approach is taken. Using this method, 
twice as many equations will be used as there are unknowns. Therefore: 

[ C h  ] is a 16*N x 8*N matrix 
{ Ak ] is a 8*N vector 
{ Fn ] is a 16*N vector 



To solve this system, each side of the system is multiplied by [ CE, IT as follows: 

Now there are an equal number of equations and unknowns and the system can be solved 
directly for the unknown constants. Substituting these constants into k and 
differentiating gives the solution for this function in terms of x and y. Therefore, we now 
have a solution for the stresses in the plate in terms of x and y. 



3. Results 

To solve for the pre-buckling stresses in a plate with a circular cutout under shear 
loading, a general program was written that allows for future expansion. This program can 
handle a rectangular or elliptical cutouts rotated at some given angle. It will also handle 
normal loading in the x and y directions as well as shear. 

isotropic plate with a circular cutout under shear loading. The plate has dimensions 
l=w=l.O" with a cutout of radius 0.15". Figure 4 shows the changes in the shear 
distribution for a hole of increased radius, and figure 5 exhibits the changes that occur 
when the material properties of the plate are non-isotropic. Figure 6 displays the shear 
stress distribution for the isotropic plate with and elliptical cutout, and figure 8 shows the 
same plate with the cutout rotated at a 450 angle to the x-axis. Figure 7 shows the shear 
stress distribution in the plate corresponding to a square cutout. 

To examine how the complex variable boundary collocation method compares to infinite 
theory, four plots were made. Each plot is based on an isotropic plate with a circular cutout 
under shear loading. The radius of the hole was varied from 0.01" to 0.15" in the plots 
shown in figures 9-12. The plots track the changes in shear stress along the x-axis from 
the edge of the cutout to the edge of the plate. As the radius of the hole decreases, the 
boundary collocation method results converge to the infinite solution. The same results can 
be shown for the plate loaded in tension in the y-direction. As the radius of the cutout 
decreases, at the edge of the hole, the stress in the y-direction divided by the value of the 
loading,*yY/p2, approaches 3 as predicted by infinite theory for an isotropic plate. This 
is shown in figure 13. 

Shown in figures 1-3 are the pre-buckling normal and shear stress distributions for an 

In finalizing the pre-buckling section of the program, a decision must be made on the 
desired number of terms in the Laurent series. For: 

-1 N 

-N 1 

a value must be chosen for N. Figure 14 indicates how the solution approaches the finite 
element solution for shear stress along the x-axis from the edge of the cutout to the edge of 
the plate as N increases. In this case, the cutout is a circle of radius 0.15". Although 
increasing N increases the accuracy of the solution, is also decreases the range of D/W for 
which a solution is possible. Worst case scenarios were run through the program, and the 
following values of N were decided upon: 

1.04% S D/W* I 30% N=5 

30% I D/W* I 60% N=8 

where D is the hole diameter and W* is the length of the longest side. It is desired that a 
length to width ratio (UW) of 4 be possible. For this condition: 

V 
4.16& I D/W I 30% 

is possible where W is the actual width of the plate. 

c 



4. Future Goa 1s 

To complete the pre-buckling problem, more finite element comparisons will be made to 
verify the solution. Contour plots of the finite element solution will be made to compare 
with the plots in figures 1-8. 

One more option will also be added to the program. The program will be written so that 
displacements can be prescribed along the boundaries as opposed to the forces being 
specified if desired. 
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